Abstract

AbstractTensile and compressive properties of polystyrene bead (PSB) foams at room temperature for strain rates from 10−3 to 105 min−1 can be represented as nearly linearly increasing functions of modulus or stress versus the logarithm of the strain rate. The shear modulus and tensile data, including failure properties, on 0.054 g/cc PSB foam at various temperatures and strain rates can be represented by master curves of log (stress or modulus) versus log (reduced strain rate). These master curves are formed by a time and temperature superposition method, wherein data at one temperature are superposed on data at another temperature by a shift along the log (strain rate) axis. These time–temperature shift factors are calculated using a form of the Arrhenius equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.