Abstract

In situ ultrafine TiC dispersion reinforced Inconel 718 alloy with enhanced mechanical properties was fabricated by the technique of reactive hot-press sintering Ti2AlC and In718 powders. The effect of Ti2AlC precursor additions (5 vol.%, 10 vol.%, 15 vol.%) on microstructure and mechanical properties of TiC/In718 composites were investigated. A relationship of microstructural characteristics, room and elevated temperature mechanical performance, and underlying strengthening mechanisms were analyzed. The results show that initial Ti2AlC precursor transformed completely into ultrafine TiC particulate (∼230 nm) and distributed uniformly in the matrix after sintering 5 and 10 vol.% Ti2AlC/In718. However, TiC particulates tended to aggregate to stripes with the addition of Ti2AlC up to 15 vol.%, which, in adverse, weaken the properties of In718. The 5 vol.% Ti2AlC/In718 sample showed a higher tensile strength of 1404 ± 13 MPa with a noticeable elongation of 9.8% at room temperature compared to the pure In718 (ultimate tensile strength (UTS) = 1310 MPa, elongation = 21.5%). At 600 °C, 700 °C, 800 °C and 900 °C, tensile strength of the as-sintered 5 vol.% Ti2AlC/In718 composite was determined to be 1333 ± 13 MPa, 1010 ± 10 MPa, 685 ± 25 MPa and 276 ± 3 MPa, increased by 9.2%, 14.6%,14.2% and 55%, respectively, compared with that of monolithic In718 alloy. The excellent tensile properties of TiC/In718 composite can be ascribed to the combined mechanisms in term of increased dislocation density, dispersive Orowan and load transfer mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.