Abstract

Diabetes is a chronic disease where millions of sufferers invasively prick their skin over the course of a day to take blood samples. Non-invasive glucose monitoring would bring relief to diabetics because it offers reduced skin damage. Microwave sensors are becoming a good choice for non-invasive glucose monitoring. This Letter presents two designs based on microwave sensors. The sensors have elliptical shapes and consist of a patch reflector and dielectric resonator (DR) that resemble a human thumb. A four-layer thumb model is presented, with a focus on the permittivity of the blood layer. The thumb was moved to various positions on the two microwave sensors to observe the effect it had on the frequency shift with various blood permittivity values. Observations showed that the elliptical DR sensor was less sensitive to errors and thumb positioning when taking glucose measurements than the elliptical patch sensor. The elliptical DR had an error of 55 MHz from the centre frequency, whereas that of the elliptical patch was 140 MHz. The effects of thumbs with various blood permittivity values were explored and explained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call