Abstract

Currently, embedded systems are composed of processors, memories, and Intellectual Property Cores (IP Cores) interconnected to develop a set of specific tasks. Therefore, the selection of an appropriate interconnection architecture is critical in terms of system performance and functionality. A Network-on-Chip provides an efficient and scalable interconnection solution when there are a large number of elements in the system. However, the bus-based interconnection system remains the best option to connect a few cores. The bus arbiter uses an allocation policy to select which IP Core obtains access to the bus. The so-called fair policies ensure that all processors in the system have the same opportunity to access the bus. However, they fail to offer a fair share of the bandwidth or transmission rate, especially when there are heterogeneous IP Cores. As a study case, we analyze an embedded aerospace system for earth observation. Different IP Cores preprocess satellite images at distinct execution times -and unbalanced processing ratesaffecting the delivery rate of images to earth. We study the phenomenon of uneven bus transmission rates due to improper bus allocation using policies such as Round Robin, FIFO, and Lottery. Also, we propose a metric to compute the maximum number of IP Cores without bus saturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.