Abstract

Diamond electrolyte solution-gate-field effect transistors (SGFETs) are suitable for applications as chemical ion sensors because of their wide potential window and good physical and chemical stabilities. In this study, we fabricated an anodically oxidized diamond SGFET from a full hydrogen-terminated diamond SGFET and demonstrated control of the device threshold voltage by irreversible anodic oxidation. The applied anodic bias voltage (VAO) was varied gradually from low to high (1.1–1.7 V). As the anodic oxidation proceeded, the threshold voltage shifted to more negative values with no degradation of hole mobility. Thus, anodic oxidation is a useful method for controlling the threshold voltage of diamond SGFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call