Abstract
Charge detection biosensors have recently become the focal point of biosensor research, especially field-effect-transistors (FETs) that combine compactness, low cost, high input, and low output impedances, to realize simple and stable in vivo diagnostic systems. However, critical evaluation of the possibility and limitations of charge detection of label-free DNA hybridization using silicon-based ion-sensitive FETs (ISFETs) has been introduced recently. The channel surface of these devices must be covered by relatively thick insulating layers ( SiO2, Si3N4, Al2O3, or Ta2O5) to protect against the invasion of ions from solution. These thick insulating layers are not suitable for charge detection of DNA and miniaturization, as the small capacitance of thick insulating layers restricts translation of the negative DNA charge from the electrolyte to the channel surface. To overcome these difficulties, thin-gate-insulator FET sensors should be developed. Here, we report diamond solution-gate FETs (SGFETs), where the DNA-immobilized channels are exposed directly to the electrolyte solution without gate insulator. These SGFETs operate stably within the large potential window of diamond (>3.0 V). Thus, the channel surface does not need to be covered by thick insulating layers, and DNA is immobilized directly through amine sites, which is a factor of 30 more sensitive than existing Si-ISFET DNA sensors. Diamond SGFETs can rapidly detect complementary, 3-mer mismatched (10 pM) and has a potential for the detection of single-base mismatched oligonucleotide DNA, without biological degradation by cyclically repeated hybridization and denature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.