Abstract

The preparation of bimetallic Pd/Pt nanofoam for use in fiber based solid-phase microextraction (SPME) is described. First, a highly porous copper foam was prepared on the surface of an unbreakable copper wire by an electrochemical method. Then, the substrate was covered with metallic Pd and Pt using galvanic replacement of the Cu nanofoam substrate by applying a mixture of Pd(II) and Pt(IV) ions. The procedure provided an efficient route to modify Pd/Pt nanofoams with large specific surface and low loading with expensive noble metals. The fiber was applied to headspace SPME of benzene, toluene, ethylbenzene and xylene (BTEX) (as the model compounds) in various spiked water and wastewater samples. It was followed by gas chromatography-flame ionization detection (GC-FID). A Plackett-Burman design was performed for screening the experimental factors prior to Box-Behnken design. Compared with the commercial PDMS SPME fiber (100μm), it had higher extraction efficiency for BTEX. Under the optimum conditions, the method has low limits of detection (0.16-0.35μgL-1), a wide linear range (1-200μgL-1), relative standard deviations between 5.8 and 10.5%, and good recoveries (>85% from spiked samples). Graphical abstract Schematic presentation of a three-dimensional Pd/Pt bimetallic nanodendrites supported on a highly porous copper foam fiber for use in headspace solid phase microextraction of BTEX. They were then quantified by gas chromatography-flame ionization detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.