Abstract

Neuroglobin is an iron-containing protein, most abundant in the vertebrate nervous system. Since neuroglobin is able to bind oxygen reversibly owing to the heme prosthetic group, it was believed that its function is an intercellular transport of oxygen in the nervous system and accumulation of oxygen for energy supply of cells in hypoxic conditions. In this work, a three-dimensional reconstruction of the neuroglobin distribution in large neurons of the rat medulla oblongata was carried out by means of immunocytochemistry and confocal laser microscopy. Positive neuroglobin immunocytochemical reaction was observed mainly in the perinuclear areas of large nerve cells exhibiting a discrete staining of the cytoplasm. Examination under the microscope at a high magnification revealed some neuroglobin-immunopositive granules, ring-like objects 1–2 μm in diameter, as well as linear and branched structures in neuronal cytoplasm and, occasionally, in the proximal segments of neuronal processes. Three-dimensional reconstruction of the neuroglobin-immunopositive structures showed that they mainly have the form of continuous lines and curves interlaced in some sites, about 1.0–1.5 μm thick, forming a complex network in the cytoplasm. The neuroglobin-immunopositive complexes found for the first time in neuronal cytoplasm are not identical to any known cytoplasmic compartments of nerve cells, but the diameter of their elements, as well as the shape and location suggest a possible link of neuroglobin with a mitochondrial network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call