Abstract

The increasing natural or man-made space debris could pose a serious threat to orbital space-based systems and their operators. Consequently, their detection, reorganization, and tracking are of considerable significance. However, the traditional solutions, including ground-based radar and optical telescope, cannot exactly observe the debris with small diameter. Imaging with space-based terahertz (THz) radar in combination with inverse synthetic aperture radar (ISAR) technique enables us to obtain high-resolution 3-D image. In this paper, we have developed a high-resolution THz radar that operates at 340 GHz with a bandwidth of 28.8 GHz and the output peak power of 5 mW for proof-of-concept. In addition, using the characteristic that space debris rotates about its main axis, we have established a 3-D ISAR imaging geometry as well as its corresponding signal model. Then, a 3-D wavenumber-domain image formation algorithm is presented and has been validated by point target simulation. The experimental results have confirmed that the THz radar can effectively achieve high-resolution 3-D imaging of the spinning space debris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.