Abstract

Under investigation is the space-shifted nonlocal PT symmetric nonlinear Schrödinger (NLS) equation, which is a novel nonlocal reduction of the classical AKNS system proposed by Ablowitz and Musslimani (2021). We construct three types of Darboux transformation with the help of the symmetry conditions of the linear matrix spectral problem. Several kinds of analytical solutions such as the periodic, breather-like and bounded soliton solutions under the zero background are derived from three kinds of spectral configurations on the complex plane. Dynamics of these solutions to the space-shifted nonlocal PT symmetric NLS equation are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.