Abstract
In this paper, a novel application of Darboux transformation is presented for (2+1)-dimensional nonlocal nonlinear Schrödinger equation. The Darboux transformation is a power method to solve some (1+1)-dimensional classical nonlinear Schrödinger (NLS) equations, however, there is less work of (2+1)-dimensional ((2+1)-D) nonlocal nonlinear Schrödinger(NNLS) equation with Darboux transformation. With the development of science, the NNLS equation gradually appears, where the nonlocality is the reverse spatial field or reverse time field. We focus on how to solve the (2+1)-D NNLS equation with reverse time field q(x,y,−t). Using the Darboux transformation, some novel (2+1)-D nonlocal soliton solutions are derived on a background of kink waves, including 1-soliton solution, 2-soliton solution, bright soliton and soliton interaction on kink wave backgrounds. This method is a novel application of Darboux transformation, which can be extend to some other nonlocal nonlinear or higher-dimensional soliton equations on kink wave backgrounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.