Abstract

The description of the three-nucleon system in terms of nucleon and \ensuremath{\Delta} degrees of freedom is extended to allow for explicit pion production (absorption) from single dynamic \ensuremath{\Delta} deexcitation (excitation) processes. This mechanism yields an energy dependent effective three-body Hamiltonian. The Faddeev equations for the trinucleon bound state are solved with a force model that has already been tested in the two-nucleon system above pion-production threshold. The binding energy and other bound-state properties are calculated. The contribution to the effective three-nucleon force arising from the pionic degrees of freedom is evaluated. The validity of previous coupled-channel calculations with explicit but stable \ensuremath{\Delta} isobar components in the wave function is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.