Abstract

Human immunodeficiency virus type 2 (HIV-2) is intrinsically resistant to non-nucleoside reverse transcriptase inhibitors and exhibits reduced susceptibility to several of the protease inhibitors used for antiretroviral therapy of HIV-1. Thus, there is a pressing need to identify new classes of antiretroviral agents that are active against HIV-2. Although recent data suggest that the integrase strand transfer inhibitors raltegravir and elvitegravir may be beneficial, mutations that are known to confer resistance to these drugs in HIV-1 have been reported in HIV-2 sequences from patients receiving raltegravir-containing regimens. To examine the phenotypic effects of mutations that emerge during raltegravir treatment, we constructed a panel of HIV-2 integrase variants using site-directed mutagenesis and measured the susceptibilities of the mutant strains to raltegravir and elvitegravir in culture. The effects of single and multiple amino acid changes on HIV-2 replication capacity were also evaluated. Our results demonstrate that secondary replacements in the integrase protein play key roles in the development of integrase inhibitor resistance in HIV-2. Collectively, our data define three major mutational pathways to high-level raltegravir and elvitegravir resistance: i) E92Q+Y143C or T97A+Y143C, ii) G140S+Q148R, and iii) E92Q+N155H. These findings preclude the sequential use of raltegravir and elvitegravir (or vice versa) for HIV-2 treatment and provide important information for clinical monitoring of integrase inhibitor resistance in HIV-2–infected individuals.

Highlights

  • Human immunodeficiency virus type 2 (HIV-2) is believed to have originated in West Africa, where the virus is endemic, and has spread to other areas with socio-economic ties to the region [1]

  • We previously showed that the single amino acid changes Q148R and N155H in HIV-2 integrase confer moderate resistance to raltegravir, whereas the Y143C change had a minimal effect on raltegravir sensitivity [11]

  • The Y143C, N155H, and Q148H, K, and R changes each conferred statistically-significant declines in infectious virus production, with mean titers 3–15-fold lower than that of wild-type ROD9 (Figure 1). These data demonstrate that treatment-associated mutations at the three key sites involved in raltegravir resistance in HIV-1 (Y143, Q148 and N155; [19]) are deleterious to viral replication in HIV-2, whereas secondary changes alone do not measurably diminish HIV-2 replication capacity

Read more

Summary

Introduction

Human immunodeficiency virus type 2 (HIV-2) is believed to have originated in West Africa, where the virus is endemic, and has spread to other areas with socio-economic ties to the region [1]. Newer ARV drugs that exhibit potent and durable anti–HIV-1 activity (i.e., tenofovir disoproxil fumarate/emtricitabine and ritonavir-boosted lopinavir) have only recently become available in West Africa. The use of suboptimal ARVs for HIV-2 treatment has resulted in a high frequency of multiclass drug resistance in the region [4]. Non-protease inhibitor-based first-line options are needed for HIV-2, in addition to new second-line ARVs, because resistance and adverse effects have left many HIV2–infected individuals with few (if any) options for effective treatment

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call