Abstract

Information, the measure of order in a complex system, is the opposite of entropy, the measure of chaos and disorder. We can distinguish several levels at which information is processed in the brain. The first one is the level of serial molecular genetic processes, similar in some aspects to digital computations (DC). At the same time, higher cognitive activity is probably based on parallel neural network computations (NNC). The advantage of neural networks is their intrinsic ability to learn, adapting their parameters to specific tasks and to external data. However, there seems to be a third level of information processing as well, which involves subjective consciousness and its units, so called qualia. They are difficult to study experimentally, and the very fact of their existence is hard to explain within the framework of modern physical theory. Here I propose a way to consider consciousness as the extension of basic physical laws – namely, total entropy dissipation leading to a system simplification. At the level of subjective consciousness, the brain seems to convert information embodied by neural activity to a more simple and compact form, internally observed as qualia. Whereas physical implementations of both DC and NNC are essentially approximate and probabilistic, qualia-associated computations (QAC) make the brain capable of recognizing general laws and relationships. While elaborating a behavioral program, the conscious brain does not act blindly or gropingly but according to the very meaning of such general laws, which gives it an advantage compared to any artificial intelligence system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call