Abstract

Phase change materials, which has been focused on the non-volatile memory field, show the possibility to carry out data storage and computing in the same physical location. However, the resistance drift behavior of phase change memory has been a huge barrier not only to traditional binary memory application for a long time, but to multi-level storage and therefore the neural network computing. Here, a bipolar programming scheme is exploited to achieve drift-reduced intermediate states and convolutional neural network (CNN) computations in Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Sb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Te <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> (GST) based memory cells. Experiments show that the resistance drift phenomena under bipolar programming have been reduced. Furthermore, the impact of bipolar operation on CNN for inference is investigated. This work provides effective means for implementing phase change neuromorphic processor with enhanced stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call