Abstract

The conventional atom probe field ion microscope permits very high resolution chemical information to be determined with a lateral spatial resolution of typically 2 nm. This spatial resolution is determined by the need to define the analysis area using an aperture. A recent development, the position sensitive atom probe (POSAP), has largely removed this limitation. In a conventional atom probe the ions passing through the aperture, which have come from a circular area of the order of 2 nm in diameter, travel along a long flight path where the mass to charge ratios are determined with high precision. In the position sensitive atom probe the aperture assembly, long flight tube and ion detector (a channel plate) are replaced with a position sensitive detector held at a known distance from the specimen surface. This detector consists of two parts, a channel plate component which permits the flight times (and hence mass to charge ratios) to be determined, and a wedge and strip anode which permits the position of the incoming ion to be calculated. This arrival position corresponds directly to the position on the specimen from which the ion came. The total field of view of the POSAP is a disc approximately 20 nm in diameter. With a conventional atom probe the data acquired during the evaporation sequence can be considered as a core extracted from the specimen, where the average composition as a function of depth is known. The position sensitive atom probe permits us to record data from a much wider core (20 nm rather than 2 nm in diameter), and also to retain the spatial information within the core. As the evaporation proceeds the two dimensional information yielded by the position sensitive detector builds up into a three dimensional block of data. We have, therefore, both chemical and spatial information in three dimensions at very high resolution from the sampled volume of material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.