Abstract

Among imaging techniques, fluorescence microscopy is a unique method to noninvasively image individual molecules in whole cells. If the three-dimensional spatial precision is improved to the angstrom level, various molecular arrangements in the cell can be visualized on an individual basis. We have developed a cryogenic reflecting microscope with a numerical aperture of 0.99 and an imaging stability of 0.05 nm in standard deviation at a temperature of 1.8 K. The key optics to realize the cryogenic performances is the reflecting objective developed by our laboratory. With this cryogenic microscope, an individual fluorescent molecule (ATTO647N) at 1.8 K was localized with standard errors of 0.53 nm (x), 0.31 nm (y), and 0.90 nm (z) when 106 fluorescence photons from the molecule were accumulated in 5 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.