Abstract

This paper implements the lattice Boltzmann method to simulate the propagation of sound waves in three dimensions. The numerical model is exercised on the lid-driven cavity flow. Tests are then proposed on acoustic situations. The results are first confronted with analytical solutions of the spherical waves emitted by a single point source inside a cubic cavity. Then, we studied the case where the waves are emitted from a circular sound source placed at the center of the left boundary of a parallelepipedic cavity filled with water. With the circular source discretized as a set of point sources, we were able to simulate the wave propagation in 3D and calculate the sound pressure amplitude. Tests using different emission conditions and LBM relaxation times finally allowed us to get good comparisons with analytical expressions of the pressure amplitude along the source axis, highlighting the performance of the lattice Boltzmann simulations in acoustics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.