Abstract
Ultrahigh vacuum evaporation of magnesium onto a hot silicon substrate (⩾200 °C), with the intention of forming a Mg2Si thin film by reaction, does not result in any accumulation of magnesium or its silicide. On the other hand, codeposition of magnesium with silicon at 200 °C, using a magnesium-rich flux ratio, gives a stoichiometric Mg2Si film which can be grown several hundreds of nm thick. The number of magnesium atoms which condense is equal to twice the number of silicon atoms which were deposited; all the silicon condenses while the excess magnesium in the flux desorbs. The Mg2Si layers thus obtained are polycrystalline with a (111) texture. From the surface roughness analysis, a self-affine growth mode with a roughness exponent equal to 1 is deduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.