Abstract

Gas chromatography-mass spectrometry (GC-MS) methodology was developed to speciate and quantitate several degradation products of polydimethylsiloxane (PDMS) in soil. We have demonstrated that the major degradation product,viz., dimethylsilanediol, can be readily analyzed by GC-MS without derivatization as commonly practiced in analyzing such materials. A mixture of linear siloxane diols (n = 1–5, wheren is the number of Me2SiO units), and cyclic dimethylsiloxanes (n = 4–6) was resolved by GC-MS. We also found that peak identity of various diols required that GC-MS is done in the chemical ionization (CI) mode, since the electron impact (EI) ionization mode produced similar mass fragmentation patterns for diols and cyclics containing the same number of silicon atoms. For siloxane diols, detection limits ranged from 100 pg (forn = 1) to 1 ng (for n = 5). For cyclics, the detection limit was about 1 pg. Dimethylsilanediol, known to be unstable even in the solid state, was shown by NMR techniques to be stable in aqueous solution at <0.1% concentration. A 100-ppm solution was stable for over a year. Purity check for dimethylsilanediol is best carried out by Si-29 solid-state NMR technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.