Abstract

ZnO thin films were doped with fluorine using atomic layer deposition (ALD) with an in-house F source at a deposition temperature of 140 °C. Structural and morphological properties of the resulting F-doped ZnO (ZnO:F) films were investigated by x-ray diffraction analysis, field emission scanning electron microscopy, and grazing incidence wide-angle x-ray diffraction. During the initial growth stage of up to 200 ALD cycles, no difference was observed between the preferred growth orientations of undoped ZnO and ZnO:F films. However, after 300 ALD cycles, ZnO and ZnO:F films showed (002) and (100) preferred orientation, respectively. This difference in preferred growth orientation arose from the perturbation-and-passivation effect of F doping, which involves F anions filling the oxygen-related defect sites in the ZnO lattice. Ultraviolet photoelectron spectroscopic analyses were carried out to investigate the surface plane dependency of the films' work functions, which confirmed that the ZnO and ZnO:F films had different growth behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.