Abstract

Consistent lightweight construction in the area of vehicle manufacturing requires the increased use of multi-material combinations. This, in turn, requires an adaptation of standard joining techniques. In multi-material combinations, the importance of integral cast components, in particular, is increasing and poses additional technical challenges for the industry. One approach to solve these challenges is adaptable joining elements manufactured by a thermomechanical forming process. By applying an incremental and thermomechanical joining process, it is possible to react immediately and adapt the joining process inline to reduce the number of different joining elements. In the investigation described in this publication, cast plates made of the cast aluminium alloy EN AC-AlSi9 serve as joining partners, which are processed by sand casting. The joining process of hypoeutectic AlSi alloys is challenging as their brittle character leads to cracks in the joint during conventional mechanical joining. To solve this, the frictional heat of the novel joining process applied can provide a finer microstructure in the hypoeutectic AlSi9 cast alloy. In detail, its Si is finer-grained, resulting in higher ductility of the joint. This study reveals the thermomechanical joining suitability of a hypoeutectic cast aluminium alloy in combination with adaptively manufactured auxiliary joining elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.