Abstract

Nowadays, manufacturing of multi-material structures requires a variety of mechanical joining techniques. Mechanical joining processes and joining elements are used to meet a wide range of requirements, especially on versatile process chains. Most of these are explicitly adapted to only one, specific application. This leads to a less flexibility process chain due to many different variants and high costs. Changes in the boundary conditions like sheet thickness, or layers, lead to a need of re-design over the process and thus to a loss of time. To overcome this drawback, an innovative approach can be the use of individually manufactured and application-adapted joining elements (JE), the so-called Friction Spun Joint Connectors (FSJC). This new approach is based on defined, friction-induced heat input during the manufacturing and joining of the FSJC. This effect increases the formability of the initial material locally and permits them to be explicitly adapted to its application area. To gain a more detailed insight into the new process design, this paper presents a detailed characterization of the new joining technique with adaptive joining elements. The effects and interactions of relevant process variables onto the course and joining result is presented and described. The joining process comprises two stages: the manufacturing of FSJC from uniform initial material and the adaptive joining process itself. The following contribution presents the results of ongoing research work and includes the process concept, process properties and the results of experimental investigations. New promising concepts are presented and further specified. These approaches utilize the current knowledge and expand it systematically to open new fields of application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.