Abstract

Abstract. Requirements of multi-material construction involve adjustments to standard joining techniques. Especially the growing importance of integral cast components poses additional engineering challenges for the industry. One approach to achieve these goals are adaptable joining elements formed by friction spinning. This approach uses friction-induced heat to form customisable joining elements to join sheets for different boundary conditions, even for brittle cast materials. It is possible to react immediately to adapt to the joining process inline and reduce the amount of different joining elements. As the joining partner serve casting plates of the aluminium casting alloy EN AC–AlSi9, which is processed in the sand casting. Joining hypoeutectic AlSi alloys constitutes a challenge because the brittle character of these cause cracks in the joint during conventional mechanical joining. Furthermore, the friction-induced heat of the novel joining process causes a finer microstructure in the hypoeutectic AlSi9 casting alloy. In particular, the eutectic Si is more fine-grained, resulting in higher joint ductility. This study indicates the joining suitability of a hypoeutectic aluminium casting alloy in combination with adaptive manufactured additional joining elements. Here, various mechanical and microstructural investigations validate the influence of the thermomechanical joining technique. In conclusion, the potential of this joining process is presented regarding the joinability of cast aluminium components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.