Abstract

Thermoluminescence (TL) glow curves from feldspars have been the subject of numerous experimental and modeling studies, because of their importance in dosimetry and luminescence dating. Recently there also has been increased interest in using these signals for temperature sensing and for thermochronometry studies. It is now generally accepted that these materials exhibit anomalous fading phenomena due to quantum mechanical tunneling, and that several of their luminescence signals can be described by localized energy transitions taking place in a randomly distributed system of trapped electrons and recombination centers. Our recent modeling work showed that the TL signals of freshly irradiated feldspar samples can also be described from a completely microscopic point of view, by using Monte Carlo methods. This paper extends this recent work, and shows how the Monte Carlo method can also describe TL signals from thermally pretreated feldspars. Specifically, the simulations show that the Monte Carlo method can describe several types of TL experiments for irradiated samples that underwent partial thermal cleaning, and for samples that underwent more complex multistage isothermal procedures. The results from the Monte Carlo simulations are compared quantitatively with experimental data from several types of feldspars, which were preheated at temperatures above 200–300 °C. Common experimental characteristics are pointed out for these preheated feldspars, and the experimental data suggest the possibility of a universal description of the thermal behavior of TL glow curves in feldspars. Specifically, it is found that the shape and width of the experimental TL glow curves do not change significantly for different preheat temperatures, and also do not change when different preheat times are used at a fixed preheat temperature. The relevance of these results for dosimetric and thermochronometry studies is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call