Abstract

Composites of nominal composition (PbTe)1−x(CoTe)x (x = 0–0.18) were fabricated by high pressure (6 GPa) sintering (773 K) method. The thermoelectric performances were investigated in the temperature range of 293–773 K. The experimental results show that CoTe utilized as the secondary phase can remarkably enhance the TE properties of PbTe, of which the highest ZT value reaches 0.88 at 473 K when x = 0.14. The enhancement of TE performance owes much to its high electric conductivity of CoTe. Meanwhile, the high pressure sintering (HPS) samples consist of nanoparticle, which significantly enhances the boundary scattering on carriers, decreases thermal conductivity, and increases Seebeck coefficient. All the results indicate that HPS method and the addition of CoTe-composite are effective methods to enhance the thermoelectric performance of PbTe as a potential TE material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call