Abstract

Almost all traditional physical formalisms are developed by using conservative forces, and the microscopic implementation of dissipation involves a sort of unusual process, mainly in quantum systems. In this work, we study the quantum harmonic model endowed with a non-Hermitian term responsible for dissipation. In addition, we also include an oscillating field that drives the model to a coherent state, which is dominated by fluctuation in a specific frequency, while regular thermal states are lowly occupied. The usual coherent state formalism at zero temperature is extended to treat dissipative models at finite temperature. We define a generating function that is used in the evaluation of the most relevant statistical averages, such as the particle distribution. Then, we successfully employ the developed formalism to discuss two well-known applications; the damped quantum harmonic oscillator, and the precession magnetization in a ferromagnetic sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.