Abstract

The quantum model for a damped harmonic oscillator linearly coupled to a reservoir of continuous frequency modes has been exactly diagonalized either with or without the rotating wave approximation. The exact dynamics, formally described in terms of the coupling function, is analyzed for the Drude model. In this scenario, we focus on a class of couplings recovering the Drude form as a limiting case. The exact time evolution of the expectation values of the position, momentum and number operators are described through Fox H-functions, as well as the correlation function of the reservoir. In correspondence with the critical values of the frequency, discontinuities appear in the long time scale dynamics, arbitrarily slowing down the relaxations of the above observables. This effect allows one to enhance arbitrarily the lifetime of the excitations, giving relevant applications in the study of the quantum domain of opto-mechanical and nano-mechanical resonators. The critical frequency approach constitutes a further method of control in the scenario of environment-induced decoherence via reservoir engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.