Abstract
In the present study, a thermodynamic model is proposed to analyze and assess the performance, through energy and exergy, of a cascade active magnetic regenerative (AMR) refrigerator operation a regenerative Brayton cycle. This cascade refrigeration system works with Gd x Tb 1–x alloys as magnetic materials where the composition of the alloy varies for different stages. In this model, the heat transfer fluid considered is a water– glycol mixture (50% by weight). The refrigeration capacity, total power consumption, coefficients of performance (COP), exergy efficiency and exergy destruction rate of a cascade AMR refrigeration (AMRR) system are determined. To understand the system performance more comprehensively, a parametric study is performed to investigate the effects of several important design parameters on COP and exergy efficiency of the system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have