Abstract

In this paper, an exergoeconomic analysis of a cascade active magnetic regenerative (AMR) refrigeration system operating on a regenerative Brayton cycle is conducted with respect to various system design parameters. The finite difference method is used in order to solve the set of governing equations, which are highly nonlinear and coupled. In exergy analysis, a thermodynamic model is developed in order to determine exergy destruction rates and calculate the exergy efficiency of the system. In the economic analysis, investment cost rates are calculated with respect to equipment costs, which are determined by cost correlations for each system component, and capital recovery factors. Thus, by combining the two analyses, an exergoeconomic model is created whereby the exergy streams are identified and cost equations are allocated for each component. The results of both exergetic and exergoeconomic analyses show that increasing the fluid mass flow rate decreases the exergy efficiency, and increasing the specific exergetic cooling rate decreases the cost per unit of cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.