Abstract

Thermo-mechanical stress field equations are developed for a mixed-mode crack propagating at constant velocity in homogeneous and isotropic materials using an asymptotic approach along with displacement potentials. Asymptotic temperature field equations are first developed for steady state temperature conditions using insulated crack-face boundary conditions. These temperature field equations are later used to derive the first three terms of thermo-mechanical stress field equations for a steady state propagating mixed-mode crack. Using these thermo-mechanical stress fields, various components of the stresses are developed, and the effects of temperature on these stress components are discussed. Further, strain energy density and the circumferential stress criteria are employed to study the effect of temperature and the crack-tip velocity on crack growth direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.