Abstract

The transport phenomena in large-scale metalorganic chemical vapor deposition (MOCVD) reactors with a rotating susceptor are investigated by numerical simulation of thin-film epitaxial growth of gallium arsenide. We are mainly concerned with the thermo-flow structure, its influence on epitaxial growth rate, and the means of improving epilayer flatness. The effects of susceptor rotation and thermo-flow conditions on gas flow, temperature and concentration fields are studied. The present results show the flow structure and transport characteristics in various flow regimes. A parameter map and the associated correlations of boundary curves of the flow-mode transition are proposed. It is demonstrated that the epilayer flatness can be tuned either by properly controlling the vortex strength in a rotation-dominated flow regime and/or by employing an inlet flow control technique proposed in the present work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.