Abstract
This paper considers the mathematical modeling and optimal design of a horizontal metal-organic chemical vapor deposition (MOCVD) reactor for GaAs film growth. A detailed 3D model of the MOCVD reactor is developed, which includes a reaction kinetic mechanism to describe the gas-phase and surface reactions occurring in the reactor, and a comprehensive heat transfer scheme to express the heat transfer between the inner reactor wall and the outer tube cooling gas. To estimate the model parameter, a data-driven optimization scheme which incorporates a uniform design technique, a neural network auxiliary model and a real-coded genetic algorithm is developed. The proposed 3D MOCVD model is shown to be in a good agreement with experimental data and presents an excellent ability in predicting the GaAs film growth rate and uniformity. Besides, the comprehensive model enables the systematic investigation of the microscopic transfer phenomena and reaction dynamics that relate to the dimensionless groups such as the Reynolds number (Re), Prandtl number, Peclet number (Pe) and Grashof number (Gr). We found that the “cold finger” and buoyancy-driven transverse rolls can occur in the AIX 200/4 horizontal MOCVD reactor when Pe≥20 and Gr/Re2≥4000. To improve the film growth performance and meet the high-quality demands, we further apply the proposed data-driven optimization scheme to search for a set of operating conditions that optimizes the film growth rate distribution and uniformity on the substrate. The optimized results indicate that a significantly better GaAs film growth performance can be achieved for the horizontal MOCVD reactor based on using the comprehensive 3D mathematical model and the proposed data-driven optimization scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Taiwan Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.