Abstract

Metals with nanometer-sized grains are strong but often suffer from poor thermal stability. Herein, nanolaminated (NL) structure with an average thickness of 110 nm and a low angle grain boundaries (LAGBs) fraction of 80% was obtained in an Al-1Mn (in wt%) alloy produced by high strain rate deformation at cryogenic temperature. The NL structures are thermally stable up to 523 K, which can effectively suppress GB precipitation during aging, thus improving the pitting corrosion resistance in 0.6 M NaCl solution. The high thermal stability of NL structures can be mainly attributed to the formation of a large fraction (80%) of LAGBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.