Abstract

Successful utilization of the latent heat energy storage system depends considerably on the thermal reliability and stability of the phase change materials (PCMs) used. Thermal stability of phase change material can be established by measuring the thermo-physical properties of the PCM after a number of repeated thermal cycles. A comprehensive knowledge of thermal stability of the PCMs as functions of number of repeated thermal cycles is essential to ensure the long-term performance and economic feasibility of the latent heat storage systems. In this paper, a detailed review is reported for thermal stability of different groups of PCMs. The PCMs are categorized as organic (paraffins and non-paraffins), inorganic (salt hydrates and metallics) and eutectics (organic eutectics and inorganic eutectics). Further, a broad database of different PCMs is developed for which thermal cycling tests were carried out by different researchers and reported in the literature. Some conclusions are derived after critical evaluation of thermal stability of different groups of PCMs. This review will assist to identify the most reliable PCM to be used for a particular application of latent heat energy storage system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call