Abstract

Single-domain antibodies (sdAb) from camelids and sharks represent the smallest immunoglobulin-based functional binding domains, and are known for their thermal stability and ability to refold after denaturation. Whereas target-binding sdAb have been derived from both immunized and naïve sharks and camelids, the stability of camelid-derived sdAb have been evaluated much more extensively. To address this disparity we characterized 20 sdAb derived from spiny dogfish shark and smooth dogfish shark in terms of their protein production, melting temperature and ability to refold after heat denaturation. Using the same expression system and protocol as we follow to produce camelid sdAb, production of the shark sdAb was quite poor, often resulting in less than a tenth of the typical yield for camelid sdAb. We measured the melting temperature of each of the sdAb. Similar to camelid sdAb, the shark-derived sdAb, showed a range of melting temperature values from 42°C to 77°C. Also similar to what has been observed in camelids, the sdAb from both shark species showed a range of ability to refold after heat denaturation. This work demonstrated that although shark sdAb can possess high melting temperatures and refolding ability, no clear advantage over sdAb derived from camelids in terms of thermostability and renaturation was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.