Abstract
Abstract The thermal residual strains in various carbon fibre-reinforced aluminium laminates ( carall ), which were generated during cooling from the curing temperature, have been evaluated by both experimental methods and theoretical analysis. The experimental methods used include the deflection of an asymmetric laminate and the yield point shift of the aluminium alloy in the carall laminate. The theoretical calculation performed was based on the classical lamination theory. Residual strains determined by each experimental method and by theoretical calculation show good agreement. In addition, the possible errors associated with each method were carefully assessed and shown to be acceptable. For carall laminates reinforced with unidirectional carbon fibres, the thermal residual stress in the aluminium layer was found to be roughly proportional to the volume fraction of the carbon/epoxy layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.