Abstract

In this study, we investigated the absorption and thermal desorption processes of H and H2O and the thickness of multilayer graphene films deposited on Cu foils using a mist-chemical vapor deposition method. Ion beam analysis techniques such as nuclear reaction analysis (NRA), elastic recoil detection (ERD), and Rutherford backscattering spectrometry (RBS) were employed. The RBS measurements revealed that the thickness of the multilayer graphene films was approximately 8±3nm (24±9 layers). The depth distribution of H was analyzed using NRA and ERD. Based on these measurements, the residual H/C ratio for multilayer graphene was estimated to be approximately 0.03 in the bulk and 0.88 on the top-most surface. Additionally, the thermal desorption temperature for H from the multilayer graphene film was less than 373K, which was much lower than that from isotropic graphite bulk (approximately 673K). These results suggest that the thermal release of H did not occur because of desorption from sp2- and sp3-hybridized C atoms, such as intercalation and defect sites. Instead, it occurred owing to the desorption of H2O adsorbed near the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call