Abstract
Thermal rectification and heat amplification are investigated in a nonequilibrium V-type three-level system with quantum interference. By applying the Redfield master equation combined with full counting statistics, we analyze the steady-state heat transport. The noise-induced interference is found to be able to rectify the heat current, which paves a new way to design quantum thermal rectifier. Within the three-reservoir setup, the heat amplification is clearly identified far from equilibrium, which is in absence of the negative differential thermal conductance.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have