Abstract

We investigate the heat flow transport properties of a parallel-coupled double quantum-dot system connected to two reservoirs with a temperature bias in the Coulomb blockade regime. We demonstrate that the effects of thermal rectification and negative differential thermal conductance (NDTC) exist in this system and analyze the influences of energy level difference and Coulomb interaction on the thermal rectification and NDTC. We find that this system can achieve a high thermal rectification ratio and NDTC when the asymmetry factor of the system is enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call