Abstract
Abstract The impact of variable thermal conductivity plays a key role in the analysis of fluid mechanics. The applications of liquid are significant in nuclear reactors, automobiles, technical and manufacturing industry, electronic appliances, and so on. The novelty of this analysis is to exhibited the variable thermal conductivity in motion of Casson liquid via porous stretching sheet. In energy equation is consider thermal radiation and heat generation. Rosseland approximation plays a key role in the current work. Under the liquid motion assumptions, BL approximation is applied on numerical model and developed partial differential equations (PDE). The similarity transportation variable is taken by transporting PDE’s to ordinary differential equations. Numerical model is explored with the help of fourth-order boundary value problem with R–K–F procedure via shooting technique. The main key points noticed are: the heat transfer rate is more effective in the presence of heat generation than that in the absence of heat generation parameter. The temperature is enhanced in presence of variable thermal radiation while comparing absence of variable thermal radiation for large numerical values of Biot Number.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have