Abstract
The femtosecond laser drilling for metal thin film is theoretically investigated in this paper. Femtosecond laser patterning of metal thin films is of technological significance because the fabrication of electrodes or metallization lines is a key process commonly required in the manufacturing of modern electronic devices. A femtosecond pulsed laser has a temporally short pulse that does not cause significant heat conduction in the material. This property of femtosecond laser pulse drilling makes sub-micron machining achievable with laser irradiation. Considering vaporization as the mechanism of the material removal, this paper employs two-temperature model to analyze the thermal process for femtosecond laser drilling of metal thin film. The variations of the drilling rate and squared diameter with laser fluence are compared with the available experimental data. This study also analytically validates that the drilling depth per pulse is governed by the optical penetration depth for low laser fluences and the squared crater diameter is linearly in proportion to the logarithm of laser fluence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have