Abstract
Thermal scanning probe lithography is used for creating lithographic patterns with 27.5 nm half-pitch line density in a 50 nm thick high carbon content organic resist on a Si substrate. The as-written patterns in the poly phthaladehyde thermal resist layer have a depth of 8 nm, and they are transformed into high-aspect ratio binary patterns in the high carbon content resist using a SiO2 hard-mask layer with a thickness of merely 4 nm and a sequence of selective reactive ion etching steps. Using this process, a line-edge roughness after transfer of 2.7 nm (3σ) has been achieved. The patterns have also been transferred into 50 nm deep structures in the Si substrate with excellent conformal accuracy. The demonstrated process capabilities in terms of feature density and line-edge roughness are in accordance with today's requirements for maskless lithography, for example for the fabrication of extreme ultraviolet (EUV) masks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have