Abstract
Thermal ground planes (TGPs) are flat, thin (external thickness of 2 mm) heat pipes which utilize two-phase cooling. The goal is to utilize TGPs as thermal spreaders in a variety of microelectronic cooling applications. TGPs are novel high-performance, integrated systems able to operate at a high power density with a reduced weight and temperature gradient. In addition to being able to dissipate large amounts of heat, they have very high effective axial thermal conductivities and (because of nano-porous wicks) can operate in high adverse gravitational fields. A three-dimensional (3D) finite element model is used to predict the thermal performance of the TGP. The 3D thermal model predicts the temperature field in the TGP, the effective axial thermal conductivity, and the evaporation and the condensation rates. A key feature of this model is that it relies on empirical interfacial heat transfer coefficient data to very accurately model the interfacial energy balance at the vapor-liquid saturated wick interface. Wick samples for a TGP are tested in an experimental setup to measure the interfacial heat transfer coefficient. Then the experimental heat transfer coefficient data are used for the interfacial energy balance. Another key feature of this model is that it demonstrates that for the Jakob numbers of interest, the thermal and flow fields can be decoupled except at the vapor-liquid saturated wick interface. This model can be used to predict the performance of a TGP for different geometries and implementation structures. This paper will describe the model and how it incorporates empirical interfacial heat transfer coefficient data. It will then show theoretical predictions for the thermal performance of TGP’s, and compare with experimental results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have