Abstract

Thermal ground planes (TGPs) are planar, thin (thickness of 3 mm or less) heat pipes which use two-phase heat transfer. The objective is to utilize TGPs as thermal spreaders in several microelectronic cooling applications. TGPs are innovative high-performance, integrated systems able to operate at a high power density with a reduced weight and temperature gradient. Moreover, being able to dissipate large amounts of heat, they have very high effective axial thermal conductivities and can operate in high adverse gravitational fields due to nanoporous wicks. A key factor in the design of the TGP is evacuation prior to filling and introduction of the proper amount of working fluid (water) into the device. The major challenge of this work is to fill heat pipes with a total liquid volume of less than 1 ml, without being able to see into the device. The current filling station is an improvement over the current state of the art as it allows for accurate filling of microliter sized volumes. Tests were performed to validate performance of the system and to verify that little to no noncondensable gasses were introduced to the system. Careful calibration of the amount of liquid introduced is important. Therefore, calibration of the burettes utilized for a liquid fill range of 0.01 ml to 100 ml was important. The magnitude of the pressure inside the TGP device is also an important factor. Charging station validation demonstrated the capability of charging TGPs with accuracy of ±1.64 μl. Calibration curves for the burettes and error characterization curves for a range of liquid charging volumes will be presented and discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.