Abstract
This paper examines how nanoparticle aggregation and a consistent magnetic field influence the peristaltic movement of a dissipative nanofluid, which is caused by the sinusoidal deformation of the boundary. The viscosity of TiO2/H2O nanofluids is accurately determined by the Krieger-Dougherty model with nanoparticle aggregation, while thermal conductivity (TC) is estimated through the Bruggeman model. The set of governing equations are modeled in a fixed frame by utilizing the conservation laws of energy, mass and momentum. Galilean transformation is utilized to transform the system of equations into a wave frame, which is then converted into a dimensionless form. The assumption of a small Reynolds number and long wavelength serve to further simplify the set of equations, which are subsequently addressed through the implementation of the differential quadrature method (DQM), a highly effective numerical technique. Quantities of interest, namely velocity, pressure gradient, temperature, trapping phenomena, heat transfer, and volumetric entropy generation are analyzed across a range of physical parameters, including the solid volume fraction (Φ=0.01−0.04), Eckert number (Ec=0.0−0.1), Hartman number (Mh=0.2−2.2), Grashof number (Gr=1.0−3.0) and temperature ratio parameter (θd=0.5−2.5). A comparative analysis is conducted between the scenario involving aggregation and the one without aggregation. It is observed that nanoparticle aggregation significantly alters these quantities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have