Abstract

Main emphasis of present work is to analyze the novel feature of entropy generation in MHD nanomaterial flow between two rotating disks. Heat transfer process is explored in the presence of Joule heating and thermal radiation. Tiwari–Das nanofluid model is employed in mathematical modeling. Aluminum oxide and copper water nanoparticles are accounted. Statistical declaration and probable error for problem accuracy are computed. Total entropy generation subject to Bejan number is scrutinized. Suitable variables are utilized to transform nonlinear PDEs to ordinary ones. Convergent series solutions are computed. Zeroth and mth order problems are discussed for stability analysis. The impact of physical flow variables like Reynolds number, magnetic parameter, porosity parameter, stretching parameter, rotational parameter, radiation parameter, Eckert number, suction injection parameter, Brinkman number and temperature ratio parameter on velocities, temperature, total entropy generation and Bejan number are examined and discussed through graphs. Velocity and thermal gradients at the surface of disks are computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.