Abstract
We have fabricated bulk heterojunction (BHJ) photovoltaic (PV) devices by thermal annealing of poly-3-hexylthiophene (P3HT)/C60 single heterojunction (HJ) PV devices at near the melting point of P3HT. The BHJ PV devices exhibited an increased efficiency of 12 times compared with single HJs. We found that the annealing of HJ devices produces an interpenetrated network of interfaces between the P3HT and C60 layers. This plays a major role in carrier separation and mobility enhancement. Also the formation of crystalline C60 domains, concurrent with polymer crystallinity, contributes to an increase in the overall external conversion efficiency. Surprisingly, the heterojunction morphology, as inferred through device performance, strongly depends on the thermal gradient across the film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.