Abstract

Missile airframe experiences large variations in wall temperature along the circumference due to high angle of attack, especially at hypersonic speeds, which leads to large thermal stresses and bending loads. Such a situation with large wall temperature variations occurs due to high angle of attack during flight. Thermal design of the airframe involves the estimation of local flow parameters and heat flux distribution. Kinetic heating analysis has been carried out for the prediction of heat load distribution on missile airframe considering hypersonic flow with high angle of attack for a particular flight trajectory. Out of a set of possible flight trajectories, a trajectory producing minimum circumferential variation in wall temperature, as concluded through kinetic heating analysis, is finalized. Transient three dimensional heat transfer analysis of the airframe is carried out for prediction of wall temperature distribution for proper selection of material of construction of airframe so that it retains its strength at elevated temperatures. Parametric study has been carried out considering various combinations of airframe wall thickness in presence of external thermal protection coating and internal insulation for the finalized trajectory. Based on the present analysis, airframe configuration having axially variable wall thickness corresponding to the selected flight trajectory is finalized. The validation of the methodology adopted for the analysis has been carried out with respect to airframe temperature data acquired during flight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.