Abstract

Manufacturing ultra-thin chip is an emerging field in semiconductor technology that is driven by 3-D integrated circuits and flexible electronics. Unlike bulk silicon (Si) chips with thickness greater than 400μm, the thermal management of ultra-thin Si chips with thickness smaller than 20μm is challenging due to the increased lateral thermal resistance implying stringent cooling requirements. Therefore, a reasonable prediction of temperature gradients in such chips is necessary. In this work, a thermal chip is implemented in an ultra-thin 0.5μm CMOS technology to be employed in surface steady-state and transient temperature measurement. Test chips are either packaged in a Pin Grid Array (PGA) ceramic package or attached to a flexible polyimide substrate. The experimental results show an on-chip temperature gradient of ∼15°C for a dissipated power of 0.4W in the case of the PGA package and ∼30°C for the polyimide substrate. The time constants are ∼50s and ∼1s for the PGA and the polyimide packages respectively. The measurements are complemented by FEM simulations using ANSYS 14.5 workbench and spice simulations using an equivalent lumped-component thermal circuit model. The lumped-element thermal circuit model is then used for the surface temperature prediction, which is compared to measurement results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.